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A small molecular library of 40 pyrimidine, pyrazole, and isoxazole derivatives, bearing structural fea-
tures for a promising binding of therapeutically interesting enzymes, was designed and prepared. An effi-
cient and straightforward solid phase synthesis was envisaged and carried out on a Rink amide resin. The
assistance of microwave heating in any step reduced the reaction time, increased the reaction yields, and
allowed an easy work-up and purification of the targeted compounds.

� 2010 Elsevier Ltd. All rights reserved.
Three main strategies are used by medicinal chemists for the
design of new biological active agents: ligand-based, fragment-
based, and structure-based molecular design.1–3 The first two ap-
proaches are generally interfaced with diversity-oriented organic
synthesis (DOS) protocols while the targeted-oriented organic syn-
thesis (TOS) protocols are adopted when the three-dimensional
structure of the addressed target is known.4

Herein we report the design and synthesis of a library of hetero-
cyclic derivatives, potentially addressing different and interesting
biological targets, following a strategy that can be seen as a fair
trade-off between DOS and TOS methods. Indeed, the designed li-
gands were prepared by a synthetic protocol amenable for the
exploration of a large molecular diversity5 but the privileged scaf-
folds and their chemical decoration were made to preferentially
target tyrosine kinases (PTKs).6

The general structure of the designed molecules bearing alkyl,
aryl, and heteroaryl substituents on a pyrimidine, pyrazole, or isox-
azole heterocyclic core is reported in Chart 1. The heterocyclic cen-
tral core was supposed to act as a chemical hook whose anchoring
at the enzymatic binding sites might be reinforced by hydrophobic,
and/or p-stacking interactions of two or even three additional aro-
matic rings and by hydrogen bonds (HBs), including strong, charge-
reinforced HBs, at the regions A–C illustrated in Chart 1.
ll rights reserved.
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onetti).
A versatile solid phase synthetic protocol was developed for the
synthesis of ligands with this binding potential with the ultimate
goal of finding new compounds with a good inhibitory potency to-
ward PTKs or other key target enzymes such as COXs and HIV re-
verse transcriptase that are inhibited to a different extent by
similar heterocyclic derivatives.7,8

A representative number of molecules was thus rationally de-
signed and prepared (Tables 1 and 2) through a versatile and
straightforward synthetic pathway outlined in Scheme 1. All mol-
ecules were prepared on a solid phase using the Rink amide resin
as a solid support.9 The reaction steps shown in the scheme include
an initial common pathway (steps a–c) and a subsequent cycliza-
tion reaction (paths 1 and 2, Scheme 1) affording the three classes
of heterocycles bearing the R1–R3 substituents indicated in Tables
1 and 2.10 The first building block, that is the 3-hydroxybenzoic
Chart 1. Schematic representation of the designed molecules.
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Scheme 1. Solid phase synthesis of pyrimidine, isoxazole and pyrazole derivatives 1–40. Reagents and conditions: (a) 3-hydroxybenzoic acid, EDC�HCl, dry DMF, overnight,
room temperature (91% yield); (b) R1COCH2Br, DBU, 10% solution of HMPA, dry DMF, VW 140 �C, 30 min (67–95% yields); (c) DMFDMA, dry DMF, VW, 120 �C, 1 h
(quantitative yield); (d) R2C(@NH)NH2, BEMP, 10% solution of HMPA in dry DMF, VW 150 �C, 30 min (69–73% yields); (e) TFA/CH2Cl2 (1:1), room temperature; (f) H2NOH�HCl,
DMF/i-PrOH (4:1), VW, 90 �C, 30 min (50–70% yields); (g) H2NNHR3�HCl, DMF/i-PrOH (4:1), VW, 100 �C, 30 min (40–81%).

Table 2
R1 substituents in isoxazole (19–22) and R1, R3 substituent combination (6�3) in pyrazole (23–40) derivativesa

a 1H NMR and LC–MS spectral data were in full agreement with the proposed structures

Table 1
R1, R2 substituent combinations (6�3) in pyrimidine derivatives 1–18a

a 1H NMR and LC–MS spectral data were in full agreement with the proposed structures.
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acid, was loaded on the solid support in 91% yield using EDC�HCl as
coupling reagent and DMF as the solvent. The use of HOBt and DICI
gave only an unsatisfactory 78% yield.
Support-bound 3-hydroxybenzamide I was reacted with differ-
ent bromomethyl ketones. The optimization of this chemical step
was less than trivial requiring a preliminary search for the optimal
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experimental conditions on the solution phase. Among the differ-
ent set of experimental conditions explored, the best results were
obtained using a 10% mixture of HMPA in DMF as the solvent and
DIPEA as the base under microwave irradiation. Unfortunately, car-
rying out the same reaction on the solid phase the overall yields
decreased dramatically (down to 40%). The problem was solved
by increasing the base strength of the used amine. In fact, by using
DBU instead of DIPEA the yields calculated after cleavage from the
resin and purification by preparative TLC were in the range 67–
95%. The next step, that is the formation of the enaminoketones,
required a full optimization on the solid phase, since there are sev-
eral known procedures for this reaction on the solution phase, to
the best of our knowledge, no valuable synthetic protocol has been
so far published for the same reaction on the solid phase. Gener-
ally, the preparation of a phenoxyenaminoketone in the solution
phase is accomplished by heating the starting ketone in neat
DMFDMA. Unfortunately, the same procedure cannot be trans-
ferred on the solid phase given the bad swelling properties of this
reagent. To gain the best compromise between the amount of
DMFDMA needed and the swelling of the resin, DMF was used as
solvent, and a 4–1 DMF/DMFDMA ratio was found to afford an
acceptable swelling of the resin. The reaction was performed under
microwave irradiation at 120 �C for 1 h affording, after cleavage
and purification by preparative TLC, a pure compound in almost
quantitative yield. The last chemical step, that is the cyclization
reaction, was obviously different since diverse reagents were used
for this chemical transformation. As illustrated in Scheme 1 the
cyclization reaction was carried out using three suitably substi-
tuted guanidines and hydrazines, and hydroxylamine, as reagents.
The optimization of this crucial step was very difficult, since it was
impossible to find out a unique procedure to accomplish all the
cyclization reactions in high yields. In fact, the best experimental
conditions settled out for the synthesis of pyrimidine derivatives
did not give satisfactorily results in the preparation of isoxazole
and pyrazole derivatives. For this reason, two different methods
were developed to carry out the cyclization reactions, one for the
synthesis of pyrimidines and another for the preparation of isoxaz-
oles and pyrazoles. For the former, the best results (69–73%, yields)
were obtained using 10 equiv of BEMP in a 10% mixture of HMPA in
DMF under microwave irradiation at 150 �C for 30 min (Table 1).

As far as the synthesis of isoxazole and pyrazole derivatives is
concerned, the best experimental conditions settled for accom-
plishing this critical transformation were quite different compared
to the previous ones, since the final cyclization was performed in a
different solvent mixture (DMF/i-PrOH, 4:1) and without base be-
cause the desired products were only obtained using the hydro-
chloric salts of the corresponding hydroxylamine or hydrazines.

In fact, the use of DMF/HMPA as well as the use of DIPEA, or also
DBU, gave only modest yields of the desired products, whereas the
use of a 4:1 mixture of DMF/i-PrOH under microwave exposure
afforded in 30 min isoxazoles 19–22 and pyrazoles 23–40 deriva-
tives at 90 �C and 100 �C, respectively (path 2, Scheme 1 and Table
2). The yields assessed for this synthetic step were 50–70% for isox-
azole and 40–85% for pyrazole derivatives.

Unexpectedly, the cyclization reactions with bromo- and meth-
oxy-phenylhydrazines gave very poor yields when the reactions
were performed in large excess of reagents (20 equiv, as done with
hydroxylamine, hydrazine and guanidines). Better results were
obtained with only 3 equiv of substituted hydrazines. Even more
surprisingly, the cyclization with hydroxylamine of enaminoketon-
ic intermediates III bearing biphenyl and the p-pyrrolidin-1-yl-
phenyl R1 substituents failed to give the expected isoxazole
derivatives.

In conclusion, the proposed solid phase synthetic protocol al-
lowed a straightforward preparation of an array of molecules span-
ning a broad range of molecular diversity. The use of microwave
irradiation11,12 in each step significantly reduced the reaction
times and improved the yields, the purity and the final work-up
of the desired products. Our strategy proved to be very versatile
to introduce a variety of molecular fragments and functional
groups for an expected productive binding at the targeted enzy-
matic binding sites.
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